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Background & Motivation

What is Myalgic Encephalomyelitis / Chronic Fatigue Syndrome
(ME/CFS)?

•Debilitating multi-system disease affecting≈ 0.6% of the UK population
(predominantly women)

•Key symptom: post-exertional malaise (worsening after activity)
•No diagnostic biomarker; biology poorly understood
•No cure and no widely effective therapy

The Problem: Confounding by Activity

•ME/CFS→ reduced physical activity
•Many biomarkers are activity-dependent
•Key question: Are biomarker differences disease-driven, or explained
indirectly through reduced activity?

Data
UK Biobank (UKB), UK

• 1,455 ME/CFS cases and 131,303 controls
•Blood traits (63), NMR metabolites (251), Proteins (2923)
•Activity measures: walking duration, days of moderate activity, minutes
of moderate activity

PEM subgroup (UK Biobank)

•Defined using the UKB Pain Questionnaire (fatigue 6 months, post-
exertional worsening, not relieved by rest).

• 297 identified; 239 used after matching to non-PEM ME/CFS cases.

All of Us (AoU), USA (Replication)

• 903 cases and 75,943 controls
• 14 overlapping blood traits
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Note: Full causal identifiability is not guaranteed; mediation effects are interpreted as statistical quantities adjusted for age and sex.

Semi-parametric mediation analysis
We used ensemble machine learning (Super Learner) to flexibly estimate all
nuisance functions required for the one-step estimation of:
•Total Effect (TE)
•Natural Direct Effect (NDE)
•Natural Indirect Effect (NIE)

Super Learner Library

•Earth (MARS), GLMnet (LASSO)
•GLM with interactions
•XGBoost/LightGBM
•Highly Adaptive Lasso (HAL)

Software (R packages)

•TE: npcausal (Kennedy, 2021) + SuperLearner (Polley et al, 2011)
•NDE & NIE: medoutcon (Hejazi et al, 2022) + sl3 (Coyle et al, 2021).

Results
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c_reactive_protein (mg/L)
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AoU UKB

ME Ctrl Sig ME Ctrl Sig

540 19539 1387 125055 +

594 22078 + 1389 125086 +

583 22094 1381 124675 +

323 4917 1386 124859 +

72 1811 1386 125038 +

751 30314 + 1251 114080 +

450 14571 + 1393 124688 +

579 23194 - 1253 114161 -

617 22343 + 1413 127347 +

494 16389 + 1408 127109 +

567 22684 + 1253 114064 +

589 23221 + 1388 124988 +

480 20480 + 1251 113997 +

754 30147 + 1387 125002 -

Key findings
•511 biomarkers differ between ME/CFS cases and controls
across blood traits, NMR metabolites, and proteomics.

•Effects are consistent across males and females: 166
biomarkers are significant in both sexes.

•Mediation via physical activity is negligible: almost no
NIEs are significant despite strong TEs.

•External replication in All of Us: 9 of 14 blood traits tested
show consistent effects (only urea differs).

•Sensitivity analysis: individuals with PEM-like symptoms
show stronger biomarker shifts.
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